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GFD I, Solutions for Problem Set #4, 2/29/2012 
[30 points total] 

For reference, the governing equations for this problem are: 

X-MOM1 ! fv1 = !g!x
X-MOM2 0 = !g!x ! g 'Ex

 

 (a) [2 pts.] Since the flow is geostrophic, the surface height is related to the upper layer 

velocity by: ! = f g( )v1 dx! , and so 

! = f
kg
V sin kx( ) . 

(b) [3 pts.] The interface shape can be seen from X-MOM2 to be E = ! g g '( )! , so 

E = ! f
kg '
V sin kx( ) . 

The maximum value of this, for the parameter values given, is: 

Emax =
fV
g 'k

=
10!4  s-1( ) 0.5 m s-1( )

10-2  m s-2( ) ! !10"4  m-1( ) =16 m . 

(c) [10 pts.] The expression for the kinetic energy per unit horizontal area at this level of 

approximation is given by 

KEA =
1
2
!1H1 u1

2 + v1
2( )+ 12 !1H2 u2

2 + v2
2( ) = 12 !1H1v1

2 . 

Note that within the Boussinesq approximation you can use some representative value for 

the density in this expression – I have called it !1 , but it could be !2 , or their average – 

they only differ by 0.1%.  For the potential energy we have to be more careful, because 

even within the Boussinesq approximation the density perturbations play a role in the 

vertical momentum equation where they are multiplied by gravity.  Thus the potential 

energy per unit horizontal area is calculated as: 
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PEA = !gz dz
!H

!

! = !2gz dz
!H

!H1+E

! + !1gz dz
!H1+E

!

!

= 1
2
g !1 + !!( ) !H1 + E( )2 ! H 2!

"#
$
%&
+ 1
2
g!1 "2 ! !H1 + E( )2!

"#
$
%&

= 1
2
g!! !H1 + E( )2 ! 12 g!2H

2 + 1
2
g!1"

2

 

Then the rest-state potential energy will be given by taking E  and !  to be zero: 

PEA0 =
1
2
g!! !H1( )2 ! 12 g!2H

2 . 

Subtracting this from the full expression gives the desired expression: 

APEA = PEA ! PEA0 =
1
2
g"! E 2 ! 2H1E#$ %& +

1
2
g!1"

2 . 

(d) [ 5 pts.] Taking the x-averages of our energy expressions, and forming their ratio, we 

find: 

KEA
x
= 1
2
!1H1v1

2
x
= 1
4
!1H1V
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x
= 1
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x
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2
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4
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(e) [5 pts.] Simplifying the final ratio for g >> g '  gives 

APEA
x

KEA
x ! f 2

H1g 'k
2 =

1

ka '( )2
 

where we have used the “internal” Rossby radius of deformation in the limit of a very 

thick lower layer: 

a ' =
g '
H1H2

H1 + H2

f
=

limH2!"

g 'H1
f

. 



 3 

The value of a '  in this case is: 

a ' =
10-2  m s-2( ) 102  m( )

10!4  s-1 = 1 m s-1

10!4  s-1 =10 km . 

Note that this is much smaller than the “external” Rossby radius, which we defined when 

looking at the Shallow Water Equations.  The internal Rossby radius is much more 

relevant to atmospheric and oceanic motions (except tides) because much of their energy 

is in baroclinic modes.  Thus, for motion with length scale greater than a ' , we expect 

rotation effects to be important, and the flow to be dominated by winds or currents in 

geostrophic balance. 

(f) [5 pts.] From the results of (e) we may state that 

APEA
x

KEA
x ! 1

ka '( )2
= L
a '

!
"#

$
%&

2

 

which will clearly be dominated by APE when the length scale becomes large relative to 

the internal Rossby radius.  The potential energy will be almost entirely associated with 

the interface displacements, which govern the first term on the RHS of: 

APEA
x
= 1
2
g!!E 2

x
+ 1
2
g!1!

2
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4
!1
f 2V 2
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big
! "# $#

+ 1
4
!1
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negligible
! "# $#

. 


